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Abstract. Here we solve a discrete one-dimensional traffic flow problem by mapping the
allowed sets of car trajectories onto a line representation of the five-vertex model configurations.
The fundamental flow diagram, obtained previously in a grand canonical ensemble, is rederived.
Fluctuations of the flow are described quantitatively and two critical exponents are defined. The
zero-density limit is studied by considering an ensemble of single directed self-avoiding loops
on a finite torus.

1. Introduction

The modelling and simulation of traffic flow has become a major field of research in
theoretical physics in the past years [1]. Beyond the classical approaches, a new class
of dicrete cellular automaton models has attracted much interest due to its simplicity and
computational efficiency [2]. However, up to now only few exact results are known, even
for the simplest cases of next-neighbour hopping [3]. Some new techniques have been
developed to reproduce at least the fundamental diagrams (flow against density) in the
stationary state [4]. Therefore, new approaches to this problem are highly recommended.
The subject of this paper will be a new interpretation in terms of the five-vertex model.

Recently [5] an exactly solved statistical mechanical model of one-dimensional traffic
flow has been constructed by using a one-to-one mapping of the dimer configurations on a
hexagonal lattice into the set of directed self-avoiding walks (DSAWs) on a square lattice.
The latter were interpreted as trajectories of cars in discrete space and time by identifying
the vertical direction with the temporal axis and the horizontal direction with the spatial
axis. This mapping allowed the authors to use the exact solution of the dimer model due
to Kasteleyn [6] for calculation of the fundamental traffic flow diagram and the car–car
correlation functions. However, the method intrinsically involves the grand canonical
ensemble with respect to the number of cars (trajectories). In the thermodynamic limit
their densityρ is controlled by two independent parameters, namely the properly chosen
statistical weightsx and t of dimers on lattice edges with different orientation. Note that
the idea for one-to-one mapping of the allowed dimer configurations on a hexagonal lattice
into non-intersecting path configurations on the square lattice has been used by Garrod [7]
in his treatment of a stochastic model of three-dimensional crystal growth.

Here we propose a solution of the same one-dimensional traffic flow problem [5] but in
the canonical ensemble with fixed number of carsNc. The solution is obtained by mapping
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the allowed sets of car trajectories on a square lattice onto a line representation of the five-
vertex model configurations, see [8]. We identify each spatial step of a car trajectory with
a right arrow, and each temporal step with a down arrow. The exclusion of intersecting
trajectories is achieved then by setting to zero the weight of vertex type 3 in the standard
notation [8]. Since, for a given lattice with periodic boundary conditions, the number
of trajectories fixes the total number of time steps, the weightt of a time step becomes
redundant (in the following we sett = 1), and the remaining independent parameters are
the car densityρ and the weightx of a spatial step (of vertex type 1). Then the problem
of finding the average flowq = q(ρ, x) can be formulated in the language of the five-
vertex model as a problem of finding the average horizontal polarization,ph = 2q−1, in a
subspace of fixed vertical polarization,pv = 1−2ρ, for the one-parameter family of vertex
weights given by

ω1 = x ω2 = ω4 = 1 ω3 = 0 ω5 = ω6 = x1/2. (1)

One readily sees that our model belongs to the class of free-fermion models [8].
The fact that the five-vertex model is equivalent to a problem of many non-intersecting

directed self-avoiding walks is known and widely used in various physical problems, see
for example [9, 10] and references therein. Note that in most applications the five-vertex
model is considered in the grand canonical ensemble and the treatment is confined to some
subspaces of parameters which are not always suitable for our problem. Thus, in [9] the
model is confined to the one-dimensional subspace of independent parameters defined by
the weightsω1 = 1, ω2 = 0, andω3 = ω4 = ω5 = ω6 = exp(−βε). Taking into account
the opposite assignment of lines to horizontal arrows in our case, we see that the above
family of weights contains (at infinite temperature,β = 0) only the pointx = 1 of our
model. The analysis of the phase diagram of the five-vertex model in the space of two
independent parameters given in [11] is inappropriate again, since the free-field condition
assumed there implies equal weights of the steps in space and time (x = t = 1). The
most general five-vertex model with three independent parameters has been studied by Noh
and Kim [10] in the context of interacting domain walls. Our one-dimensional subspace
corresponds to settingx2 = y1 = 1 in their parametrization of the vertex weights.

In section 2 we make precise the isomorphism between the car trajectories and the line
configurations of the five-vertex model on a finite torus. Then, from the results of [10]
we deduce the exact expressions for the density of the configurational free energyκ(ρ, x)

and the flowq(ρ, x) in the thermodynamic limit. The flow diagram coincides with the
one obtained in [5]. In section 3 we study the fluctuations in the flow and their relation to
the features of the fundamental flow diagram. To give a simple picture of the singularities
emerging in the zero-density limit, in section 4 we consider the case of just one car which
maps on a single DSAW.

2. The model

First we have to make precise our traffic interpretation of the lines of down- and right-
arrows in the five-vertex model configurations on a finite torus. Ambiguity may arise from
the fact that these lines form closed loops which wind around the torus in space and/or
time directions. Accordingly, the configurations can be classified by the winding numbers
ωs andωt , respectively, which are the same for all closed lines in a given configuration.
The allowed sets{ωs, ωt } of winding numbers are of the following types. Obviously,{0, 0}
is the empty lattice. The configurations of the class{0, 1} contain lines of down-arrows
only, winding once in the time direction, and, therefore, can be interpreted as trajectories
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of stopped cars. The class{1, 0} contains lines of right-arrows only, winding once in
the space direction. Although these configurations have no meaningful interpretation in
terms of car trajectories, they are of no relevance to the present work, since we consider
the subspace of configurations with a fixed non-zero numberNc of down-arrows. The
remaining classes of configurations are of the types{ωs, 1}, with ωs = 1, . . . , ωmax

s , and
{1, ωt }, with ωt = 1, . . . , ωmax

t . For the sake of concreteness, we consider a torus consisting
of L columns andM rows of sites. Choose the origin of a coordinate system at an arbitrary
site and label it by(1, 1). Let then(p, q) be the site in columnp and rowq, p = 1, . . . , L,
q = 1, . . . ,M. The number of carsNc, by definition, equals the number of down-arrows
in each row of vertical edges connecting sites(p, q) with sites(p, q + 1) for p = 1, . . . , L
and any fixedq. Obviously, all cars in a configurationC of type {ωs, 1} pass the same
distanceωsL for timeM, i.e. their average velocity is

v(C ∈ {ωs, 1}) = ωsL

M
. (2)

On the other hand, in configurations of the type{1, ωt } each winding of a closed line
along the periodic time direction is interpreted as a separate car trajectory associated with
the corresponding down-arrow in any fixed row of vertical edges. Thus the number of cars
is a multiple ofωt , and for each group ofωt cars, generated by one closed line, the total
sum of the distances passed by the individual cars isL. Therefore, the average velocity of
a car in such a configuration is

v(C ∈ {1, ωt }) = L

ωtM
. (3)

Clearly, a shortcoming of this interpretation is the introduction of spurious correlations
between end points and starting points of different car trajectories belonging to successive
turns of one closed line. However, these are expected to have no effect in the thermodynamic
limit.

Next we note that the winding numbersωs , ωt and the total numbers of occupied
horizontal,Nx , and vertical,Nt , edges in any configurationC with ωt(C) > 1 are related
by the equations

Nx(C) = ρ(C)L2ωs(C)/ωt (C)

Nt(C) = ρ(C)LM (4)

whereρ(C) = Nc(C)/L is the density of cars (down-arrows in a row of vertical edges).
Therefore, from equations (2)–(4) we conclude that the average velocityv(C) in any
configuration withωt(C) > 1 is given by

v(C) = Nx(C)

Nt(C)
= Nx(C)

ρ(C)LM
. (5)

Now we confine our consideration to the set of configurationsCρ with a fixed number
of cars,Nc(Cρ) = ρL > 1. The partition function of the model is given by

ZL,M(ρ, x) =
∑
Cρ

xNx(Cρ) (6)

and the configurational free energy density is defined as

κL,M(ρ, x) = (ML)−1 lnZL,M(ρ, x). (7)

From equations (5)–(7) and the definition of the flow density,q(Cρ) := ρv(Cρ), it follows
that the average flow density is

qL,M(ρ, x) = 1

LM
〈Nx(Cρ)〉 = x ∂

∂x
κL,M(ρ, x). (8)
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The explicit expression for the configurational free energy density (7) in the
thermodynamic limitL → ∞, M → ∞ follows from equation (29) of [10], by taking
into account the fact that in the free-fermion case the solutions{zj } of the Bethe ansatz
equations giving the maximum eigenvalue of the transfer matrix arezj = exp(ikj ), with
kj = (2j − 1)π/L, j = −Nc/2 + 1, . . . ,0, . . . , Nc/2 for Nc even, andkj = 2jπ/L,
j = −(Nc − 1)/2, . . . ,0, . . . , (Nc − 1)/2 for Nc odd. Note also that their domain-wall
densityq corresponds to our 1− ρ and set their parametera = x. The result is

κ(ρ, x) = 1

2π

∫ π

πρ

dφ ln(1− 2x cosφ + x2). (9)

Hence, the fundamental traffic flow–density relationship which follows from (8) in the
thermodynamic limit is

q(ρ, x) = 1

2
(1− ρ)+ 1

2
sign(x − 1)

[
1− 2

π
arctan

(
(x + 1)

|x − 1| tan(πρ/2)

)]
. (10)

This equation coincides with equation (17) in [5] which has been obtained in the grand
canonical ensemble by neglecting the fluctuations in the number of cars. The variablex in
it controls the average velocityv1 of a single car, since for configurations with only one
trajectoryv1 = x.

Note that for fixed 0< ρ < 1 the flowq(ρ, x) monotonically increases withx > 0 from
the valueq(ρ, 0) = 0 to q(ρ,∞) = 1− ρ. On the other hand, the behaviour of the flow as
a function of the densityρ has two qualitatively different regimes. Whenx < 1 the flow
initially increases withρ from q(0, x) = 0 to the maximum valueq(ρmax, x) = 1

2 − ρmax,
reached atρmax = π−1 arccosx, then decreases to zero atρ = 1. Whenx > 1 the flow
monotonically decreases fromq(0, x) = 1 to q(1, x) = 0. The existence of these two
regimes has found no explanation in [5]. To shed more light on this fact, in the next section
we consider the fluctuations of the flow.

3. Fluctuations of the flow

Obviously, in the ensemble of configurationsCρ with a fixed density of cars on a finite
torus, the fluctuations in the flowq(Cρ) = ρv(Cρ) arise due to fluctuations in the ratio
ωs(C)/ωt (C) of the winding numbers, see equations (4) and (5). The variance of the flow
is given by the susceptibility

χ(ρ, x) = lim
L→∞,M→∞

(LM)−1[〈N2
x (Cρ)〉 − 〈Nx(Cρ)〉2] = x ∂

∂x
q(ρ, x). (11)

By explicit differentiation of equation (10) one obtains

χ(ρ, x) = 2

π

x tan(πρ/2)

(x − 1)2+ (x + 1)2 tan2(πρ/2)
. (12)

It is straightforward to show thatχ(ρ, x), for any fixed 0< ρ < 1, grows withx ∈ [0, 1),
reaches maximum atx = 1,

max
x
χ(ρ, x) = χ(ρ, 1) = 1

2π
cot(πρ/2) (13)

and then decreases asymptotically asx−2 whenx →∞. Thus, there are infinite fluctuations
in the flow only atx = 1 in the limit ρ ↓ 0, when the susceptibility diverges asπ−2ρ−1.
Hence we derive that the critical exponent with respect toρ at ρc = 0 is γρ = 1. Note that
for any x 6= 1 the susceptibility vanishes in the limitρ ↓ 0. In the other limit,ρ ↑ 1, the
susceptibility vanishes for allx.
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Let us consider in more detail the limitρ ↓ 0. By expanding the integral in the
right-hand side of equation (9) in powers ofρ one easily obtains the expansion for the
configurational free energy density. Hence a term-by-term differentiation yields the average
flow. The corresponding analytical expressions depend on weatherx is less or greater than
unity:

κ(ρ, x) = −ρ ln(1− x)+O(ρ3) q(ρ, x) = ρ x

1− x +O(ρ3) (14)

whenρ ↓ 0, x < 1, and

κ(ρ, x) = ln x − ρ ln(x − 1)+O(ρ3) q(ρ, x) = 1− ρ x

x − 1
+O(ρ3) (15)

whenρ ↓ 0, x > 1. For anyx 6= 1 the susceptibility is given by

χ(ρ, x) = ρx

(x − 1)2
+O(ρ3) ρ ↓ 0, x 6= 1. (16)

The above equation defines a critical exponent with respect tox at xc = 1, namelyγx = 2.
By using the same method, in the limitρ ↑ 1 we obtain for allx,

κ(ρ, x) = (1− ρ) ln(x + 1)+O[(1− ρ)3]

q(ρ, x) ' (1− ρ) x

x + 1
χ(ρ, x) ' (1− ρ) x

(x + 1)2
. (17)

4. The zero-density limit

The origin of the singularities in the zero-density limit can be easily understood in the case
of a single car. According to the definition of our model on a finite torus, a fixed value
Nc(C) = 1 restricts the set of configurations of the five-vertex model to the subset{ω, 1}1
which contains exactly one closed line of down- and right-arrows windingω > 0 times in
the spatial direction and just once in the temporal one. Equivalently, we have an ensemble
of single closed DSAWs on aL×M torus with partition function

ZL,M(L
−1, x) = L

[M(L−1)/L]∑
ω=0

aL,M(ωL)x
ωL. (18)

HereaL,M(ωL) is the number of single closed DSAWs which pass through the origin(1, 1)
and have exactlyM vertical steps andωL horizontal steps. The factorL in the right-hand
side is due to the fact that a walk can pass through any of theL sites in the first row.
The numbersaL,M(ωL) have a simple combinatorial meaning: they enumerate the ways in
which theωL horizontal steps can be distributed among theM rows in such a way that in
each row there are zero or no more thanL− 1 horizontal steps (to avoid self-intersection).
The generating function of these numbers is [12]:( L−1∑

m=0

tm
)M
=

(L−1)M∑
k=0

aL,M(k)t
k. (19)

On the other hand, the left-hand side of the above equation equals

(1− tL)M(1− t)−M =
∞∑
k=0

M∑
m=0

(−1)m
(
M

m

)(
M − 1+ k
M − 1

)
t k+mL. (20)

Hence we obtain

aL,M(ωL) =
ω∑
n=0

(−1)n
(
M

n

)(
M − 1+ (ω − n)L

M − 1

)
. (21)
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The symmetry and unimodality properties of the series of positive integersaL,M(k),
k = 0, . . . , (L − 1)M, follow from (19) and the repeated application of theorem 3.9 of
[13] (see also theorem 4.2 therein):

aL,M(k) = aL,M((L− 1)M − k) k = 0, . . . , (L− 1)M (22)

aL,M(k + 1) > aL,M(k) k = 0, . . . , [(L− 1)M/2]− 1. (23)

Note thataL,M(0) = aL,M((L − 1)M) = 1 yields the lower bound onaL,M(k); a simple
upper bound follows by settingt = 1 in (19), hence

16 aL,M(k) 6 LM k = 0, . . . , (L− 1)M. (24)

The above bounds suffice to prove that the thermodynamic limit for the configurational free
energy density (7) atρ = L−1 exists and equals

κ(0, x) = lim
L→∞,M→∞

κL,M(L
−1, x) =

{
0 if 0 6 x < 1

ln x if x > 1.
(25)

In order to obtain the behaviour of the flow density, see equations (7) and (8), we set
x = ey and make use of the fact thatκL,M(L−1, ey), L,M = 2, 3, . . ., is a sequence of
convex functions ofy ∈ (−∞,∞). Indeed, for the first and second derivatives with respect
to y one obtains

qL,M(L
−1, ey) := ∂

∂y
κL,M(L

−1, ey) = 1

M
〈ω〉 (26)

χL,M(L
−1, ey) := ∂2

∂y2
κL,M(L

−1, ey) = L

M
〈(ω − 〈ω〉)2〉 > 0. (27)

Obviously, the above sequence of convex functions converges to the convex function of
y ∈ (−∞,∞) given by the right-hand side of (25) after the substitutionx = ey . Therefore,
from the Griffiths–Fisher lemma [14, 15] on the sequence of first derivatives of convex
functions it follows that the flow density in the thermodynamic limit is given by the step-
like function

q(0, x) = lim
L→∞,M→∞

x
∂

∂x
κL,M(L

−1, x) =
{

0 if 0 < x < 1

1 if x > 1.
(28)

Note that equations (25) and (28) reproduce correctly theρ ↓ 0 limit of equations (14) and
(15).

Next we show that the value of the flow density atx = 1 is a direct consequence of
the symmetry property (23), providedM = pL, wherep is an arbitrary positive integer.
Indeed, in this case from (18) and (23) it follows that

ZL,pL(L
−1, x) = xpL(L−1)ZL,pL(L

−1, x−1). (29)

By differentiating the above identity with respect tox and setting thenx = 1 we obtain for
the value of the first derivative of the partition function at that point

Z′L,pL(L
−1, 1) = 1

2pL(L− 1)ZL,pL(L
−1, 1). (30)

Hence, the finite-size flow density, see equations (7) and (8), atx = 1 equals

qL,pL(L
−1, 1) = 1

2(1− L−1). (31)

From these results one may conclude that atx = 1 the partition function (18) is
dominated by the terms withω ' 1

2M, which are the largest ones in view of the symmetry
and unimodality properties (23) and (23). Whenx < 1 the representative configurations
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have winding numbersω which are of order smaller thanM, while for x > 1 the difference
of ω from the maximum number of windings is of order smaller thanM itself. Thus, even
a single car provides a unit flow atx > 1 by filling the torus with almost close-packed
trajectory (a car moving with ‘infinite’ velocity). Naturally, large fluctuations are expected
to occur exactly atx = 1, whereχL,M(L−1, 1) may diverge asL,M →∞.

5. Discussion

The exact solution of the five-vertex model in sectors of fixed density of down-arrows in
a row is mapped onto a one-dimensional traffic flow problem. The model represents an
equilibrium statistical mechanical analogue in (1+ 1)-dimensional space of the modified
Nagel–Schreckenberg cellular automaton withvmax = ∞, suggested and solved for the
steady-state properties under periodic boundary conditions in [5]. The coincidence of the
obtained traffic flow–density relationship with the one derived previously in the grand
canonical ensemble [5] shows that the fluctuations of the car density are unessential for
the fundamental diagram within the model.

An exact explicit expression is derived for the variance of the flow density in the
thermodynamic limit, and its singularities are described in terms of critical exponents. It is
shown that the two qualitatively different regimes of the flow density as a function of the
car density are separated by a line of maximum flow fluctuations. The zero-density limit is
studied by considering an ensemble of single closed DSAWs on a finite torus. It is proved
that in the thermodynamic limit of zero car density the flow density becomes a step-like
function of the single car velocity. The unphysical solution which yields unit flow density
at zero car density is explained as arising from a few cars moving with infinite velocity.

Some comments are in place here on the relation of our results to those of the recent
paper by Sasv́ari and Kert́esz [16], where the singularity of the Nagel–Schreckenberg model
[2] in the zero-densityvmax= ∞ limit has been considered. First, we emphasize that in the
present model statistical weights are assigned to trajectories as a whole and, therefore, its
exact interpretation in terms of a cellular automaton with local rules seems hardly feasible.
As already mentioned, the closest analogue known is thevmax = ∞ stochastic cellular
automaton suggested in [5], which, however, differs essentially from thevmax = ∞ limit
of the Nagel–Schreckenberg model in the aspect that the former has no velocity memory.
The lack of velocity memory is a great over-simplification with regard to vehicular traffic
modelling, since no rules for individual driving behaviour are taken into account, and
very large velocity fluctuations are allowed to occur. However, the comparison of the
fundamental flow-density diagram for the present model, see figure 2 in [5], with that
obtained by computer simulations on thevmax = ∞ limit of the Nagel–Schreckenberg
model, see figure 12 in [16], reveals some striking similarities. In the latter case the graph
of the flow j (ρ), as a function of the densityρ, seems composed of two different branches
of the flow q(ρ, x) in the former case. Namely, for very small densitiesρ the flow j (ρ)
behaves like the ‘unphysical’ branch ofq(ρ, x) at somex = 1+ ε, 0 < ε � 1, since it
tends to unity in the zero-density limit, and decreases quickly with the increase ofρ up to
the valueρt . At the crossover pointρ = ρt , which was found [16] to decrease with the
system sizeL as ρt ' L−t , t ∼= 0.5, the regime changes drastically to what the authors
of [16] call a plateau, and what we find to resemble very much the ‘physical’ branch of
q(ρ, x) at somex = 1− ε, 0 < ε � 1. This observation, together with the fact that the
point ρ = ρt lies in the region of anomalously high fluctuations of the flow, suggests the
speculation that the crossover takes place between a metastable and a stable branch of the
flow in the vmax = ∞ Nagel–Schreckenberg model. Obviously, the above conjecture is
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based on the comparison of the fundamental diagrams of two different (although similar in
some sense) models and, hence, its validity needs further investigation.

Finally, we mention that the cellular automaton, withvmax = ∞ and without velocity
memory [5], has found a recent application in modelling the ‘bottleneck’ situation in traffic
[17]. To this end open boundary conditions have been used, the cars being injected into the
system with a prescribed rate at the left boundary, and leave it freely through the right one.

Acknowledgment

This work was supported in part by the Bulgarian National Foundation for Scientific
Research, grant MM 405/94.

References

[1] Wolf D E, Schreckenberg M and Bachem A (eds) 1996Traffic and Granular Flow(Singapore: World
Scientific)

[2] Nagel K and Schreckenberg M 1992J. Physique2 2221
[3] Schreckenberg M, Schadschneider A, Nagel K and Ito N 1995Phys. Rev.E 51 2939
[4] Schadschneider A and Schreckenberg M 1997J. Phys. A: Math. Gen.30 L69
[5] Brankov J G, Priezzhev V B, Schadschneider A and Schreckenberg M 1996J. Phys. A: Math. Gen.29 L229
[6] Kasteleyn P W 1963J. Math. Phys.4 287
[7] Garrod C 1991J. Stat. Phys.63 987
[8] Baxter R J 1982Exactly Solved Models in Statistical Mechanics(London: Academic)
[9] Bhattacharjee S M 1991Europhys. Lett.15 815

[10] Noh J D and Kim D 1994Phys. Rev.E 49 1943
[11] Gulacsi M, Van Beijeren M and Levi A C 1993 Phys. Rev.E 47 2473
[12] Riordan J 1958An Introduction to Combinatorial Analysis(New York: Wiley) p 104
[13] Andrews G E 1976The Theory of Partitions (Encyclopedia of Mathematics and Its Application)vol 2,

ed G-C Rota (Reading, MA: Addison-Wesley)
[14] Griffiths R B 1964J. Math. Phys.5 1215
[15] Fisher M E 1965J. Math. Phys.6 1643
[16] Sasv́ari M and Kert́esz J 1997Phys. Rev.E 56 4104
[17] Pesheva N C, Daneva D P and Brankov J G 1997Rep. Math. Phys.to appear


